The Risk of Aluminum Demand from Terawatt Photovoltaics for Net Zero Emissions by 2050

0
  • 1.

    Peters, GP et al. The challenge of keeping global warming below 2°C. Nat. Air conditioning Change 34–6 (2013).

    Item

    Google Scholar

  • 2.

    Renewable energies 2020: analysis and forecasts until 2025 (IEA, 2020); https://www.iea.org/reports/renewables-2020/solar-pv

  • 3.

    Net Zero by 2050: A roadmap for the global energy sector (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050

  • 4.

    International Photovoltaic Technology Roadmap (ITRPV.net): 2020 Results (ITRPV, 2021).

  • 5.

    Electricity storage and renewable energies: costs and markets until 2030 (IRENA, 2017); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf

  • 6.

    Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects (IRENA, 2019); https://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf

  • seven.

    Energy Technology Outlook 2017 (IEA, 2017); https://www.iea.org/reports/energy-technology-perspectives-2017

  • 8.

    Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 217140 (2017).

    Item

    Google Scholar

  • 9.

    Victoria, M. et al. Solar PV is poised to power a sustainable future. Joule 51041-1056 (2021).

    CASE
    Item

    Google Scholar

  • ten.

    Verlinden, PJ Future Challenges for Photovoltaic Manufacturing at the Terawatt Level. J. Renew. To support. Energy 12053505 (2020).

    Item

    Google Scholar

  • 11.

    Projected costs of electricity generation 2020 (IEA, 2020); https://www.iea.org/reports/projected-costs-of-generating-electricity-2020

  • 12.

    Renewable capacity statistics 2021 (IRENA, 2021); https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021

  • 13.

    Hund, K., La Porta, D., Fabregas, TP, Laing, T. & Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (World Bank, 2020).

  • 14.

    The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021); https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions

  • 15.

    Gervais, E., Shammugam, S., Friedrich, L. & Schlegl, T. Feedstock requirements for large-scale photovoltaic deployment – ​​effects of innovation-driven roadmaps on material constraints to 2050 . Renew. To support. Energy Rev. 137110589 (2021).

    CASE
    Item

    Google Scholar

  • 16.

    Zhang, Y., Kim, m, Wang, L., Verlinden, P. & Hallam, B. Design Considerations for Multi-Terawatt Scale Manufacturing of Existing and Future Photovoltaic Technologies: Consumption Challenges and Opportunities silver, indium and bismuth. Energy Approx. SCI. https://doi.org/10.1039/D1EE01814K (2021).

  • 17.

    Bödeker, JM, Bauer, M. & Pehnt, M. Aluminum and renewable energy systems – Perspectives for sustainable electricity and heat production (Institut für Energie und Umweltforschung Heidelberg GmbH, 2010); https://www.semanticscholar.org/paper/Aluminium-and-Renewable-Energy-Systems-Prospects-of-Maurice-Bauer/77e625686fe58aca72860a933ff779ff8ec0ba99

  • 18.

    Aluminum Sector Greenhouse Gas Pathways to 2050 (International Aluminum Institute, 2021).

  • 19.

    Tsakiridis, PE Characterization and use of aluminum salt slag – a review. J. Hazard. Mater. 217–2181–10 (2012).

    Item

    Google Scholar

  • 20.

    Zhu, Y. & Cooper, DR An Optimal Reverse Material Supply Chain for Aluminum Scrap in the United States. proc. CIRP 80677–682 (2019).

    Item

    Google Scholar

  • 21.

    Li, Y., Yue, Q., He, J., Zhao, F. & Wang, H. When will the era of secondary aluminum arrive in China? Resour. Politics 65101573 (2020).

    Item

    Google Scholar

  • 22.

    Kvande, H. The aluminum smelting process. J. Occup. About. Med. 56S2–S4 (2014).

    CASE
    Item

    Google Scholar

  • 23.

    Bertram, M., Martchek, KJ & Rombach, G. Material flow analysis in the aluminum industry. J.Ind. School. 13650–654 (2009).

    Item

    Google Scholar

  • 24.

    Brough, D. & Jouhara, H. The aluminum industry: a review of advanced technologies, environmental impacts and opportunities for waste heat recovery. Int. J. Thermofluids 1–2100007 (2020).

    Item

    Google Scholar

  • 25.

    Haupin, WE Electrochemistry of the Hall-Héroult process for aluminum smelting. J. Chem. Educ. 60279 (1983).

    CASE
    Item

    Google Scholar

  • 26.

    Oberbeck, L., Alvino, K., Goraya, B. & Jubault, M. IPVF PV Technology Vision 2030. Program. Photovoltaic. 281207-1214 (2020).

    Item

    Google Scholar

  • 27.

    Jordan, DC, Kurtz, SR, VanSant, K. & Newmiller, J. Compendium of Photovoltaic Degradation Rates. Program. Photovoltaic. 24978–989 (2016).

    Item

    Google Scholar

  • 28.

    International Aluminum Organization: Statistics (IAI, 2021).

  • 29.

    Summaries of mineral products 2020 (USGS, 2020); https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf

  • 30.

    Hao, H., Geng, Y. & Hang, W. GHG emissions from primary aluminum production in China: regional disparity and policy implications. Appl. Energy 166264–272 (2016).

    CASE
    Item

    Google Scholar

  • 31.

    Ding, N., Liu, N., Lu, B. & Yang, J. Aluminum life cycle greenhouse gas emissions based on regional industrial transfer in China. J.Ind. School. https://doi.org/10.1111/jiec.13146 (2021).

  • 32.

    Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 586482–483 (2020).

    CASE
    Item

    Google Scholar

  • 33.

    van Schaik, A. & Reuter, MA in Recycling manual (eds Worrell, E. & Reuter, MA) 307–378 (Elsevier, 2014).

  • 34.

    Bauer, AJR & Laska, C. LIBS for automated sorting of aluminum scrap (TSI Incorporated, 2018).

  • 35.

    Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Technological Advancements Needed in Photovoltaics to Achieve Widespread Grid Price Parity. Prog. Photovoltaic. 241272-1283 (2016).

  • 36.

    Shepard, Jeff. The carbon nanotube frame improves the performance of the PV module. EE power (April 15, 2015).

  • 37.

    Dupuis, J. et al. NICE module technology – from concept to mass production: a 10 year review. In proc. 38th IEEE Photovoltaic Specialist Conference 003183–003186 (IEEE, 2012).

  • 38.

    Goulden, M., Spence, A., Wardman, J. & Leygue, C. Differentiating “the user” in RSD: developing demand-side response in advanced economies. Energy policy 122176–185 (2018).

    Item

    Google Scholar

  • 39.

    Moya, JA et al. Energy efficiency and GHG emissions: prospective scenarios for the aluminum industry JRC Science and Policy Reports (European Commission, 2015).

  • 40.

    Butler, C., Maxwell, R., Graham, P. and Hayward, J. Australian Industry Energy Transitions Initiative Phase 1 Technical Report Report No. 978-0-9871341-9-6 (ClimateWorks Australia, 2021).

  • 41.

    Kraemer, Susan. Australian researchers are evaluating the commercial viability of solar alumina calcining. SolarPACES (August 3, 2020).

  • 42.

    Padamata, SK, Yasinskiy, AS & Polyakov, PV Progress of inert anodes in the aluminum industry: a review. J. Bb. Fed. Univ. Chem. 1118-30 (2018).

    Google Scholar

  • 43.

    Aluminum (IEA, 2020); https://www.iea.org/reports/aluminum

  • 44.

    Yasinskiy, AS, Padamata, SK, Polyakov, PV & Shabanov, AV An update on inert anodes for aluminum electrolysis. Light Met. Carbon material. 115–23 (2020).

    Google Scholar

  • 45.

    Haller, MY, Carbonell, D., Dudita, M., Zenhäusern, D. & Häberle, A. Seasonal energy storage in aluminum for 100% solar heat and power supply. Energy Talks. Managed. 5100017 (2020).

    CASE

    Google Scholar

  • 46.

    Life Cycle Inventories and Life Cycle Analyzes of Photovoltaic Systems 2020 (IEA, 2020).

  • 47.

    Fthenakis, VM & Kim, HC Life Cycle Assessment of High Concentration Photovoltaic Systems. Prog. Photovoltaic. 21379–388 (2013).

    CASE
    Item

    Google Scholar

  • 48.

    Trade and manufacture of photovoltaic solar panels: a deep dive (NEF Bloomberg, 2021).

  • Share.

    Comments are closed.