Peters, GP et al. The challenge of keeping global warming below 2°C. Nat. Air conditioning Change 34–6 (2013).
Google Scholar
Renewable energies 2020: analysis and forecasts until 2025 (IEA, 2020); https://www.iea.org/reports/renewables-2020/solar-pv
Net Zero by 2050: A roadmap for the global energy sector (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050
International Photovoltaic Technology Roadmap (ITRPV.net): 2020 Results (ITRPV, 2021).
Electricity storage and renewable energies: costs and markets until 2030 (IRENA, 2017); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf
Future of solar photovoltaic: deployment, investment, technology, grid integration and socio-economic aspects (IRENA, 2019); https://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf
Energy Technology Outlook 2017 (IEA, 2017); https://www.iea.org/reports/energy-technology-perspectives-2017
Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 217140 (2017).
Google Scholar
Victoria, M. et al. Solar PV is poised to power a sustainable future. Joule 51041-1056 (2021).
Google Scholar
Verlinden, PJ Future Challenges for Photovoltaic Manufacturing at the Terawatt Level. J. Renew. To support. Energy 12053505 (2020).
Google Scholar
Projected costs of electricity generation 2020 (IEA, 2020); https://www.iea.org/reports/projected-costs-of-generating-electricity-2020
Renewable capacity statistics 2021 (IRENA, 2021); https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021
Hund, K., La Porta, D., Fabregas, TP, Laing, T. & Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (World Bank, 2020).
The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021); https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions
Gervais, E., Shammugam, S., Friedrich, L. & Schlegl, T. Feedstock requirements for large-scale photovoltaic deployment – effects of innovation-driven roadmaps on material constraints to 2050 . Renew. To support. Energy Rev. 137110589 (2021).
Google Scholar
Zhang, Y., Kim, m, Wang, L., Verlinden, P. & Hallam, B. Design Considerations for Multi-Terawatt Scale Manufacturing of Existing and Future Photovoltaic Technologies: Consumption Challenges and Opportunities silver, indium and bismuth. Energy Approx. SCI. https://doi.org/10.1039/D1EE01814K (2021).
Bödeker, JM, Bauer, M. & Pehnt, M. Aluminum and renewable energy systems – Perspectives for sustainable electricity and heat production (Institut für Energie und Umweltforschung Heidelberg GmbH, 2010); https://www.semanticscholar.org/paper/Aluminium-and-Renewable-Energy-Systems-Prospects-of-Maurice-Bauer/77e625686fe58aca72860a933ff779ff8ec0ba99
Aluminum Sector Greenhouse Gas Pathways to 2050 (International Aluminum Institute, 2021).
Tsakiridis, PE Characterization and use of aluminum salt slag – a review. J. Hazard. Mater. 217–2181–10 (2012).
Google Scholar
Zhu, Y. & Cooper, DR An Optimal Reverse Material Supply Chain for Aluminum Scrap in the United States. proc. CIRP 80677–682 (2019).
Google Scholar
Li, Y., Yue, Q., He, J., Zhao, F. & Wang, H. When will the era of secondary aluminum arrive in China? Resour. Politics 65101573 (2020).
Google Scholar
Kvande, H. The aluminum smelting process. J. Occup. About. Med. 56S2–S4 (2014).
Google Scholar
Bertram, M., Martchek, KJ & Rombach, G. Material flow analysis in the aluminum industry. J.Ind. School. 13650–654 (2009).
Google Scholar
Brough, D. & Jouhara, H. The aluminum industry: a review of advanced technologies, environmental impacts and opportunities for waste heat recovery. Int. J. Thermofluids 1–2100007 (2020).
Google Scholar
Haupin, WE Electrochemistry of the Hall-Héroult process for aluminum smelting. J. Chem. Educ. 60279 (1983).
Google Scholar
Oberbeck, L., Alvino, K., Goraya, B. & Jubault, M. IPVF PV Technology Vision 2030. Program. Photovoltaic. 281207-1214 (2020).
Google Scholar
Jordan, DC, Kurtz, SR, VanSant, K. & Newmiller, J. Compendium of Photovoltaic Degradation Rates. Program. Photovoltaic. 24978–989 (2016).
Google Scholar
International Aluminum Organization: Statistics (IAI, 2021).
Summaries of mineral products 2020 (USGS, 2020); https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf
Hao, H., Geng, Y. & Hang, W. GHG emissions from primary aluminum production in China: regional disparity and policy implications. Appl. Energy 166264–272 (2016).
Google Scholar
Ding, N., Liu, N., Lu, B. & Yang, J. Aluminum life cycle greenhouse gas emissions based on regional industrial transfer in China. J.Ind. School. https://doi.org/10.1111/jiec.13146 (2021).
Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 586482–483 (2020).
Google Scholar
van Schaik, A. & Reuter, MA in Recycling manual (eds Worrell, E. & Reuter, MA) 307–378 (Elsevier, 2014).
Bauer, AJR & Laska, C. LIBS for automated sorting of aluminum scrap (TSI Incorporated, 2018).
Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Technological Advancements Needed in Photovoltaics to Achieve Widespread Grid Price Parity. Prog. Photovoltaic. 241272-1283 (2016).
Shepard, Jeff. The carbon nanotube frame improves the performance of the PV module. EE power (April 15, 2015).
Dupuis, J. et al. NICE module technology – from concept to mass production: a 10 year review. In proc. 38th IEEE Photovoltaic Specialist Conference 003183–003186 (IEEE, 2012).
Goulden, M., Spence, A., Wardman, J. & Leygue, C. Differentiating “the user” in RSD: developing demand-side response in advanced economies. Energy policy 122176–185 (2018).
Google Scholar
Moya, JA et al. Energy efficiency and GHG emissions: prospective scenarios for the aluminum industry JRC Science and Policy Reports (European Commission, 2015).
Butler, C., Maxwell, R., Graham, P. and Hayward, J. Australian Industry Energy Transitions Initiative Phase 1 Technical Report Report No. 978-0-9871341-9-6 (ClimateWorks Australia, 2021).
Kraemer, Susan. Australian researchers are evaluating the commercial viability of solar alumina calcining. SolarPACES (August 3, 2020).
Padamata, SK, Yasinskiy, AS & Polyakov, PV Progress of inert anodes in the aluminum industry: a review. J. Bb. Fed. Univ. Chem. 1118-30 (2018).
Google Scholar
Aluminum (IEA, 2020); https://www.iea.org/reports/aluminum
Yasinskiy, AS, Padamata, SK, Polyakov, PV & Shabanov, AV An update on inert anodes for aluminum electrolysis. Light Met. Carbon material. 115–23 (2020).
Google Scholar
Haller, MY, Carbonell, D., Dudita, M., Zenhäusern, D. & Häberle, A. Seasonal energy storage in aluminum for 100% solar heat and power supply. Energy Talks. Managed. 5100017 (2020).
Life Cycle Inventories and Life Cycle Analyzes of Photovoltaic Systems 2020 (IEA, 2020).
Fthenakis, VM & Kim, HC Life Cycle Assessment of High Concentration Photovoltaic Systems. Prog. Photovoltaic. 21379–388 (2013).
Google Scholar
Trade and manufacture of photovoltaic solar panels: a deep dive (NEF Bloomberg, 2021).